10 research outputs found

    Bounds on heavy sterile neutrinos revisited

    Full text link
    We revise the bounds on heavy sterile neutrinos, especially in the case of their mixing with muon neutrinos in the charged current. We summarize the present experimental limits, and we reanalyze the existing data from the accelerator neutrino experiments and from Super-Kamiokande to set new bounds on a heavy sterile neutrino in the range of masses from 8 MeV to 390 MeV. We also discuss how the future accelerator neutrino experiments can improve the present limits.Comment: 14 pages, 6 figures; a detailed and expanded versio

    Design, Commissioning and Performance of the PIBETA Detector at PSI

    Full text link
    We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two three-month beam periods in 1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.

    The CEBAF large acceptance spectrometer (CLAS)

    No full text
    The CEBAF large acceptance spectrometer (CLAS) is used to study photo- and electro-induced nuclear and hadronic reactions by providing efficient detection of neutral and charged particles over a good fraction of the full solid angle. A collaboration of about 30 institutions has designed, assembled, and commissioned CLAS in Hall B at the Thomas Jefferson National Accelerator Facility. The CLAS detector is based on a novel six-coil toroidal magnet which provides a largely azimuthal field distribution. Trajectory reconstruction using drift chambers results in a momentum resolution of 0.5% at forward angles. Cherenkov counters, time-of-flight scintillators, and electromagnetic calorimeters provide good particle identification. Fast triggering and high data-acquisition rates allow operation at a luminosity of View the MathML source. These capabilities are being used in a broad experimental program to study the structure and interactions of mesons, nucleons, and nuclei using polarized and unpolarized electron and photon beams and targets. This paper is a comprehensive and general description of the design, construction and performance of CLAS
    corecore